The team then went on to perform numerous 3D real-time hybrid simulations of a 40-story tall building outfitted with nonlinear fluid viscous dampers, leveraging the capabilities of the Speedgoat hardware.
In addition, they expanded the capabilities of the NHERI Lehigh EF by creating the Lehigh Real-time Cyber-Physical Structural Systems Laboratory, a reduced laboratory with MTS 244 servo-hydraulic actuators, along with Tolomatic RSA electric actuators that is dedicated to conducting cyber-physical, structurerelated systems research. With the success of the Servotest digital control system, Lehigh purchased a second system to control both the MTS and Tolomatic actuators, creating a combination of simultaneous hydraulic and electric actuator control.
Even though the field of real-time hybrid simulation is still in its infancy, this project marks a breakthrough for the field by combining established understandings of physical systems through real-time nonlinear FEA with direct sensor feedback and command outputs to physical components.
The NHERI Lehigh EF team, lead by Dr. Liang Cao, NHERI Lehigh research scientist, and their colleagues at Servotest plan to take this workflow further by expanding the cyber-physical capabilities of the facility with a shake table and large capacity soil-structure interaction test infrastructure.
Leveraging machine learning with online model updating algorithms implemented into Simulink, the NHERI Lehigh EF plans to expand its numerical modeling capabilities of real-time FEA to facilitate simulations of much larger and more complex systems and their components.